Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.

نویسندگان

  • Matt Pharr
  • Kejie Zhao
  • Xinwei Wang
  • Zhigang Suo
  • Joost J Vlassak
چکیده

Electrochemical experiments were conducted on {100}, {110}, and {111} silicon wafers to characterize the kinetics of the initial lithiation of crystalline Si electrodes. Under constant current conditions, we observed constant cell potentials for all orientations, indicating the existence of a phase boundary that separates crystalline silicon from the amorphous lithiated phase. For a given potential, the velocity of this boundary was found to be faster for {110} silicon than for the other two orientations. We show that our measurements of varying phase boundary velocities can accurately account for anisotropic morphologies and fracture developed in crystalline silicon nanopillars. We also present a kinetic model by considering the redox reaction at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical reaction at the lithiated silicon/crystalline silicon interface. From this model, we quantify the rates of the reactions at the interfaces and estimate a lower bound on the diffusivity through the lithiated silicon phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.

Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems w...

متن کامل

Self-limiting lithiation in silicon nanowires.

The rates of charging and discharging in lithium-ion batteries (LIBs) are critically controlled by the kinetics of Li insertion and extraction in solid-state electrodes. Silicon is being intensively studied as a high-capacity anode material for LIBs. However, the kinetics of Li reaction and diffusion in Si remain unclear. Here we report a combined experimental and theoretical study of the lithi...

متن کامل

Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.

Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates wit...

متن کامل

In situ TEM of two-phase lithiation of amorphous silicon nanospheres.

To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, t...

متن کامل

In situ atomic-scale imaging of electrochemical lithiation in silicon.

In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ transmission electron microscopy can be used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2012